DYNAMIC RELATIONS FOR A MOVING
PHASE INTERFACE

M. K. Likht and V, A, Shteinberg

In the theory of two-phase media motion two limiting cases are usually examined: the Stefan problem
[1], in which the motion of the media is neglected, and the Rayleigh problem on bubble growth [2], in which
the phase change is not taken into account.

However, there are problems of flow stratification, behavior of vapor bubbles subject to strong super-
heating or pressure discontinuities, shock wave propagation in a two-phase medium, and others in whic
increased requirements are presented on the accuracy of the account for the phase interaction conditions
at their interface, and therefore in the solution of these problems we cannot neglect either the motion or
the phase transformations.

In the following we attempt to obtain such conditions, which become the corresponding limiting cases
in the Rayleigh and Stefan problems.

1. For a correct phenomenological account for the interaction conditions at the phase interface we
can use the results of strong discontinuity theory in gasdynamics with additional account for surface tension
[3, 4]. In so doing we use the mass, momentum, and energy conservation laws.

From the mass conservation law

% 0dQ=0 (1.1)
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and the continuity equation for continuous media, with the aid of the expression [5]
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follows the first compatibility equation condition
Ul =0 (1.3)

Here p is the density; W is the velocity of the particles of the medium; U is the normal velocity of
the medium relative to the front; N is the phase-interface velocity in the normal direction; @ is the iso-
lated volume of moving liquid; o is the portion of phase interface bounded by the surface £ of volume &;
brackets denote the difference of the values (jump) of the quantity ¢ on the two sides of the interface; and
the subscripts 1 and 2 relate to the liguid and vapor, respectively.

The second compatibility condition follows from the momentum conservation law:
-+ owae =(tae + {xds+ §amumar w=—m (1.4)
& Q z T

where £ is the volume force density; x is the surface force density (we neglect viscosity in the case in
question); p ig pressure; n is the vector of the outward normal to the interface; o is the (constant) surface
tension coefficient; 7 is the vector tangent to the contour T" — the boundary of the surface o.

With account for (1.2) and the continuity equation, (1.4) takes the form
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After transformations of the surface and contour integrals with account for the equation of motion, we
obtain the second condition on the interface:

lpUW + pnl = —2azHn (1.6)
where H is the average curvature of the surface,
The third condition on the interface follows from the energy conservation law
d (¢ Jwe
= {ép(——z—— T E> aQ + §adc}§ZWEdQ +<§(xw — qn)do +<§{Wa (nx %)} dT (1.7)
Here, q is the heat flux through unit area of the interface; E is the internal energy density.
We use (1.2) and the Gauss-Ostrogradskii formula to transform (1.7);
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The volume integral on the left equals zero by virtue of the energy equation. After several trans-
formations we obtain

[(pW + @n + o U (Y,W? + E)] = —22HN (1.8)

As a result we have the compatibility equations on the phase interface

pUl=0, W.)=0 [pU*+pl=—2aH {1.9)
loU (YoU? + i) + g,1 =0 (1.10)
(i=E+p/p)

Here i is the enthalpy.

The last condition of {1.10) shows that examination of problems with phase change without account for
the thermal fluxes is meaningful only for fast processes. In fact, in the latter case [U?] = —2[i], and since
—[i] = L (L is the heat of vaporization) U must have values close to 2+ 10° m/sec for water.

If heat conduction is not neglected, the hydrodynamic conditions (1.9) and (1.10) alone are not suffi-
cient for a unique solution, This can be seen from the example of the Stefan [1] and Rayleigh [2] problems,
where the following conditions are used in addition to the hydrodynamic conditions:

bhb—i=L, Ty =T(p), T,=17T(p) (L.11)
where T and T(p) are the temperatures at the interface and at the line of phase equilibrium, respectively.

Conditions (1.11) assume equilibrium of the system. The application of (1,11) to processes in highly
superheated liquid in the case of shock thermal fluxes or when shock waves pass through two-phase media
is not justified. For such fast processes the missing conditions have been obtained [6] in the kinetic exami-
nation of the phase-change problem. These conditions are the expressions for the mass, energy Q, and
momentum G fluxes in terms of the thermodynamic parameters of the phases at the boundary:

0U = () [ 7] 0 = [ (L) [ (2 + w2y 2] (1.12)
_—

Here m is the molecular mass; K is Boltzmann's constant; the single and double primes relate to the
liquid and vapor, respectively; and the bracketed expressions are to be taken first for the liquid parameters
and then for the vapor parameters at the interface, as before,
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2. To compare the resulting compatibility conditions with the analogous conditions of {1, 7, 8], we
examine the dynamics of the change of a spherical vapor bubble in a large liguid volume.

For a bubble of radius R the system of equations (1.9), (1.10) takes the form

pUTRU? + il + [g,] =0 (2.2)
U=Wp—R)

We assume that at infinity the liquid is at rest and locate the coordinate origin at the center of the
bubble,

We neglect the influence of the gravity force; then the liquid motion will depend only on the radius
vector of the liquid element. From the equations of hydrodynamics of a viscous incompressible liguid
follows

W, =20 p=p(—'§ ~2a—:4> + Do (t) (2.3)

r2

If we neglect the effect of phase change on bubble growth dynamics, i.e., if we take Wy = Re, and if
we also neglect the quantity [p U%) in comparison with 2 /R, then from (2.3) and the compatibility condi-
tions (2.1) we obtain one of the limiting cases — the Rayleigh eguation [2]

RR” + 3[oR? = (py — peo — 20 [ R) [ p’ (2.4)

The authors of [7] and [8], assuming that p, is the saturated vapor pressure at the liquid temperature
at the interface, used (2.4) to describe vapor bubble growth dynamics in superheated liquid. They used the
boundary condition for the heat conduction equation in the liquid at the moving vaporization surface

or|  _\Lp" p (2.5)
ar r=z_2_l7~’ R

Here A! is the thermal conductivity, Equation (2.5) is the heat-balance equation for the phase inter~
face and accounts partially for the effect of phase change on bubble growth.

Condition (2.5) is obtained from (2,2) if we neglect: 1) heat flow in the vapor; 2) the quantity [1/, U?]
in comparison with [i], and if we take —[i] = L.

For moderate liquid superheats (1 —10°K)and low pressures this neglect of the dynamic terms is
justified by the good agreement between the theoretical and experimental [9] results.

However, as noted previously, in taking the Rayleigh equation as the basis the authors of [7, 8] neglect
the role of the phase change in Eq. (2.1) for the mass and momentum flux, which is not justified in many
cases,

For the other limiting case, the Stefan problem, the compatibility conditions with account for surface
tension are obtained from (2,1) in the form

W1 = Wzandp1 :pz——ZOC/R for p'zp”
and from (2.2)
-, @ . .
[ 5] = Lo for —(11=1L

and the interface motion is determined entirely by heat transfer,

Let us make clear what changes occur when we account for phase change in the dynamics of the vapor
bubble growth. From the first equalities of (2.1) and (2.3) follows

Ro=a(®)/R{1—p"[p) (2.8)

Excluding a(t) from this expression by means of relation (2.3) and using (2.1), we obtain

R (3 — B R — O L () — o 22 (2.7)
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where p, (T) is the saturated vapor pressure in the bubble for the temperature T at the interface, and p,,
is the pressure at infinity,

1t follows from (2.7) that significant deviations from the case studied in [7, 8] can be expected, first,
for p"= p! for example, with bubble growth near the critical point T*; second, when (p")° is large, speci-
fically with a pressure jump at infinity or for high superheats.

3. To illustrate the role of the additional terms obtained in (2.7), let us analyze its solution for
p"=p’, (o) <€1, py — px = Ap = const (3.1)

Under these assumptions (2,7) admits the single quadrature
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(3.2)

y R
<ﬁ-1~— = Ro)

Here R, is the initial radius of the nucleus; we set R+ = 0 for t = 0, For the initial bubble growth
stage the resulting solution (3.2) simplifies considerably if we take into account the smallness of ¢ —1

¢— /R BT (1 4 Le) -0 VE=T (3.3)

The solution of the Rayleigh equation (2.4) with condition (3.1) can be obtained from (3.3) for p"= 0.
We see from comparison of this solution with (3.3) that phase change leads to change of the initial bubble
growth by a factor of f = 1/v8.

Thus, for low pressures, when p" « p!, the phase change is retarded by the influence of the dynamic
terms to the degree that vapor bubble growth takes place nearly the same as for a gas bubble, For T = T*
the deviations from the solutions of [7, 8] become significant even for low superheats.

4, To determine the influence of the additional terms in (2.7) on vapor bubble growth dynamics near
T* under the same assumptions used in [7, 8], calculations were made using the Minsk-2 digital computer,
The maximum liguid superheat at temperatures near T* was determined using the method of [10, 11],

The system of equations defining bubble growth dynamics used for the calculation has the form

R Ly SR 7 g R ~ 2 (4.1)
RR” - 2 R*—RR p’—p"—p'TE)"(pZ(])—poo——R‘)
dp _ Lpp" (4.2)
dr =~ (o' —p")T
i
T 2L Qo iy g\ edy? LA (4.3)
T =Ty VHSR (t') (¢ — 'yhdt <a _c,p,>

0

Here c' is the heat capacity, a' is the thermal diffusivity, and T, is the initial system temperature,
Equation (4.3) yields the temperature at the bubble wall in the initial period of its growth (for R = Ry) [8]
and is the solution of the heat conduction problem through a moving vaporization surface.

If we take as the initial conditions for the system (4.1) —(4.3) the radius of the nucleus corresponding
to the given superheat

Ry = 2a/(po — peo) (4.4)

(where p, is the saturated vapor pressure at the temperature Ty) and Rj = 0, then the system will be in
equilibrium, The external conditions must be altered to bring the bubble out of equilibrium. The initial
bubble radius will be taken equal to Rg= Ry' + &, A <Ry

The solutions of (4.1) —(4.3) together with the initial conditions were obtained by the Runge-Kutta
method refined by subdivision of the step. For comparison and check of the computation technique, cal-
culations were made with superheats At = Ty~—T_ = 3 and 5°K for water at T , = 373°K and p,, = 10° N/mz,
i.e., for the same conditions as in {7, 8].
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Fig. 1 Fig, 2

Fig. 1. Relative radius change £ —1 versus time t, in
nsec, for T = 641°K and AT = 0.03°K: 1) Ry= 2- 10‘8 m,
2) Ry=5+10"" iy 3) Rg= 2.8-10%m, 4) Ry = 3- 10 m,
5YRy=1°10""m, 6) Ry=5°10"m, 7)R0—6 -107%
Primes indicate calculations using (2.4).

Fig. 2. Relative radius change { —1 versus time {, in
nsec, combinations of values of T; and AT shown in
parentheses in °K: 1 (641, 0.5), 2 (643, 0.2), 3 (647, 0.03).
) Rg=1+10""m, b) Rg=3-10%m

Since in this case p" « p', the system of equations (4.1) —(4.3) coincides in first approximation with
the system used for calculation in [7, 8]. In fact, calculations made of the system of equations (4,1)—(4.3)
agreed well with the solutions obtained in [7, 8]. This gives some confidence in the correctness of this
computational technique for other initial conditions as well,

However, near the critical point the calculations of water vapor bubble growth and collapse dynamics
using the system of equations (4.1)—(4.3) led to a significant difference from the solutions obtained from
Eq. (2.4), (4.2), and (4.3), used in [7, 8], which is seen from Fig, 1.

1t was found from the numerical calculation, that, first of all, for T = T* the term RR° p-" Jlor—p™
in (4.1) is of the same order as the remaining terms of the equation; second, the bubble growth time
t ~R/R° for R~ R, is of the same order as the characteristic time R%/a of the heat-conduction process
(i.e., heat conduction cannot be neglected).

We see from the curves (Fig. 1) that at the initial time the growth (or collapse) rate is greater by f
times than that given by (2.4). Then the nature of the bubble growth in accordance with (2.4) and (2.7) is
different. Solution (2.7) has an inflection point and then grows in proportion to t to a power whose exponent
is less than 1. This would be expected, since for T= T* and p'~ p”the asymptotic behavior of the bubble
near the critical point should be described by the well-known Stefan solution [1]. The initial slowing in the
bubble growth (collapse) is associated with the manifestation of surface tension.

It appears that in this case the physical process of bubble growth is analogous to the process of speci-
men crystallization from a melt; bubble growth takes place together with movement motion of the isotherm
T = T (py), where T(p,) is the phase change temperature, i.e., the bubble behavior actually differs from the
solution in [7, 8], where "repulsion® (dynamic terms) is significant, since p" «p'.

In contrast with solution (2.4), solution (2.7) depends nonmonotonically on Ry: for each T, there is an
R, for which the bubble growth rate is maximal (Fig. 1).
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The variation of vapor bubble growth as a function of T, is shown in Fig, 2, We see from the curves

that with approach to T* the bubble growth and condensation process slows considerably. This corresponds
to the general tendency for slowing of processes near the phase change point of the second kind (specifically,
near the critical point of the substance), which is associated with the singularities at this point of the iso-
thermal compressibility, heat capacity, and other thermodynamic quantities.
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