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In the theory of two-phase  media  motion two l imit ing ca se s  a r e  usually examined: the Stefan problem 
[1], in which the motion of the med ia  is neglected,  and the Rayleigh p rob lem on bubble growth [2], in which 
the phase  change is not taken into account. 

However ,  the re  a r e  p rob l ems  of flow stra t i f icat ion,  behavior  of vapor  bubbles subject  to s t rong s u p e r -  
heating or  p r e s s u r e  discontinuit ies ,  shock wave propagat ion in a two-phase  medium,  and o thers  in which 
increased  r e q u i r e m e n t s  a r e  p resen ted  on the accuracy  of the account for the phase  in terac t ion  conditions 
at the i r  in terface ,  and the re fo re  in the solution of these  p rob l ems  we cannot neglect  e i ther  the motion or  
the phase  t r ans fo rma t ions .  

In the following we a t tempt  to obtain such conditions, which become the cor responding  l imit ing ca se s  
in the Rayleigh and Stefan p rob lems .  

1. For  a c o r r e c t  phenomenological  account for  the in teract ion conditions at the phase  in te r face  we 
can use the r e su l t s  of s trong discontinuity theory  in gasdynamics  with additional account for  sur face  tension 
[3, 4]. In so doing we use the m a s s ,  momentum,  and energy conserva t ion  laws, 

From the mass conservation law 

y/- 9 d O = 0  (1.1) 

and the continuity equation for continuous media ,  with the aid of the express ion  [5] 

d 
cT I eP d O -~ I (-~t + tp d iv W ) d f~ -~ i [ ~ U ] d~ (U ----- Wn -- N) (1.2) 

follows the f i r s t  compat ibi l i ty  equation condition 

[p UI = 0 (1.3) 

H e r e  p is the density; W is the veloci ty  c~ the pa r t i c l e s  of the medium;  U is the normal  ve loc i ty  of 
the medium re la t ive  to the front; N is the phase - i n t e r f ace  veloci ty  in the normal  direction; ~ is the i s o -  
la ted volume of moving liquid; ~ is the port ion of phase  in te r face  bounded by the sur face  Z of volume 12; 
b racke t s  denote the di f ference of the values  (jump) of the quantity ~0 on the two s ides  of the interface;  and 
the subsc r ip t s  1 and 2 r e l a t e  to the liquid and vapor ,  r e spec t ive ly .  

The  second compat ib i l i ty  condition follows f rom the momentum conserva t ion  law: 

-~d lpWdg"=! fd~4-d t  I x d z + ~  a ( n x x ) d F  (~=--pn) (1.4) 
2~ r 

where  f is the volume force  density; X is the su r face  force  densi ty (we neglect v i scos i ty  in the case  in 
question); p is p r e s s u r e ;  n is the vec to r  of the outward normal  to the interface;  ~ is the (constant) su r face  
tension coefficient;  1" is the vec tor  tangent to the contour F - the boundary of the sur face  ~.  

With account for (1~ and the continuity equation, (1.4) takes  the fo rm 
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(1.5) 

A f t e r  t r a n s f o r m a t i o n s  of  the  s u r f a c e  and con tou r  i n t e g r a l s  with account  fo r  the  equa t ion  of mot ion ,  we 
o b t a i n  the  s e c o n d  cond i t ion  on the  i n t e r f a c e :  

[9 UW + pn] = --2aHn 

w h e r e  H i s  the  a v e r a g e  c u r v a t u r e  o f  the  s u r f a c e .  

T h e  t h i r d  cond i t ion  on the  i n t e r f a c e  fo l lows  f r o m  the  e n e r g y  c o n s e r v a t i o n  law 

H e r e ,  q i s  the hea t  f lux th rough  unit  a r e a  of  t he  i n t e r f a c e ;  E is  t he  i n t e r n a l  e n e r g y  dens i ty .  

We  use  (1.2) and  the  G a u s s - O s t r o g r a d s k i i  f o r m u l a  to  t r a n s f o r m  (1.7): 

d 

r 

(1.6) 

(1.7) 

The  v o l u m e  i n t e g r a l  on t h e  l e f t  equa l s  z e r o  by v i r t u e  of the  e n e r g y  equat ion.  A f t e r  s e v e r a l  t r a n s -  
f o r m a t i o n s  we ob ta in  

[(pW + q)n + 9 U (~/.~W 2 4:- E)] = --2aHN (1o85 

A s  a r e s u l t  we have  the  c o m p a t i b i l i t y  equa t ions  on the  p h a s e  i n t e r f a c e  

[9U] = 0, [W~.] = 0, [9U ~ + p] - --2all (1.9) 

[9U (1/~U2 + i) + q~] = 0 (1.10) 
( i = E + p / p )  

H e r e  i i s  the  en tha lpy .  

The last condition of (i.i0) shows that examination of problems with phase change without account for 
the thermal fluxes is meaningful only for fast processes. In fact, in the latter case [U 2] = -2[i], and since 

-[i] = L (L is the heat of vaporization) U must have values close to 2.103 m/sec for water. 

If heat conduction is not neglected, the hydrodynamic conditions (1.95 and (1.105 alone are not suffi- 
cient for a unique solution. This can be seen from the example of the Stefan [I] and Rayleigh [2] problems, 

where the following conditions are used in addition to the hydrodynamic conditions: 

i~ - -  i 1 = L, T 1 = T (p), T 2 = T (p) (1o11) 

w h e r e  T and T(p) a r e  t he  t e m p e r a t u r e s  at  the  i n t e r f a c e  and at  the  l ine  of p h a s e  e q u i l i b r i u m ,  r e s p e c t i v e l y .  

Cond i t ions  (1.11) a s s u m e  e q u i l i b r i u m  of  ti le s y s t e m .  T h e  a p p l i c a t i o n  of  (L l15  to p r o c e s s e s  in h igh ly  
s u p e r h e a t e d  l iqu id  in  the  c a s e  of  shock  t h e r m a l  f luxes  o r  when shock  w a v e s  p a s s  t h rough  t w o - p h a s e  m e d i a  
i s  not  j u s t i f i ed .  F o r  such f a s t  p r o c e s s e s  the  m i s s i n g  c ond i t i ons  have  been  ob t a ined  [6] in  the  k i n e t i c  e x a m i -  
na t i on  of  the  p h a s e - c h a n g e  p r o b l e m .  T h e s e  cond i t i ons  a r e  the  e x p r e s s i o n s  for  the m a s s ,  e n e r g y  Q, and 
m o m e n t u m  G f luxes  in t e r m s  of the  t h e r m o d y n a m i c  p a r a m e t e r s  of  the  p h a s e s  a t  the  bounda ry :  

( k \ v ,  " 
9U= \~m/ ET'/:~_, ], Q={2~,~ (~) '} ' /:IT"/ ,(2+ln~,,)~,  ] (1.125 

G =-U~ T 

H e r e  m i s  the  m o l e c u l a r  m a s s ;  K i s  B o l t z m a n n ' s  cons tan t ;  the  s ing le  and double  p r i m e s  r e l a t e  to the  
l i qu id  and  v a p o r ,  r e s p e c t i v e l y ;  and the  b r a c k e t e d  e x p r e s s i o n s  a r e  to be t a k e n  f i r s t  fo r  the  l i qu id  p a r a m e t e r s  
and then  for  the  v a p o r  p a r a m e t e r s  a t  the  i n t e r f a c e ,  a s  b e f o r e .  
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2. To compare  the resul t ing  compat ib i l i ty  conditions with the analogous conditions of [1, 7, 8], we 
examine  the dynamics  of the change of a spher ica l  vapor  bubble in a la rge  liquid volume.  

For  a bubble of rad ius  R the s y s t e m  of equations (1.9), (1.105 takes  the fo rm 

[0 U] = 0, [W~.] = 0, [p U ~ -~ p] = --2a / R (2.1) 

pU[1/2U 2 + i] + [qn] -- 0 (2.2) 

(u = w n -- n )  

We assume  that at infinity the liquid is at r e s t  and locate the coordinate  origin at the center  of the 
bubble, 

We neglect  the influence of the g rav i ty  force;  then the liquid mot ion will depend only on the rad ius  
vec to r  of the liquid element.  F rom the equations of hydrodynamics  of a viscous  i ncompres s ib l e  liquid 
follows 

W r ~ - - ~ - ,  P = P  r 2r 4 + p ~ ( t )  (2.3) 

If we neglect  the effect  of phase  change on bubble growth dynamics ,  i .e. ,  if we take W1R = R ' ,  and if 
we also neglect  the quantity [p U 2] in compar i son  with 2~ /R,  then f rom (2.35 and the compat ib i l i ty  condi-  
t ions (2.15 we obtain one of the l imit ing ca se s  - the Rayleigh equation [2] 

RR'" ~- ~AR "2 = (P2 - -  poo --  2a / R) 1 0'  (2.4) 

The authors  of [7] and [8], a ssuming  that P2 is the sa tu ra ted  vapor  p r e s s u r e  at the liquid t e m p e r a t u r e  
at the in terface ,  used (2.45 to desc r ibe  vapor  bubble growth dynamics  in superhea ted  liquid. They used the 
boundary condition for the heat  conduction equation in the liquid at the moving vapor iza t ion  sur face  

OT 
Or Ir=R ~ ~ R" (2 .5)  

H e r e  )~' is the t he rma l  conductivity.  Equation (2~ is the hea t -ba lance  equation for the phase  i n t e r -  
face and accounts  pa r t i a l ly  for  the effect  of phase  change on bubble growth. 

Condition (2.55 is obtained f rom (2~ if we neglect: 15 heat  flow in the vapor ;  25 the quantity [1/2U2 ] 
in compar i son  with [i], and if we take - [ i ]  = L~ 

For  mode ra t e  liquid superhea ts  (1-10~ low p r e s s u r e s  this  neglect  of the dynamic t e r m s  is 
just i f ied by the good ag reemen t  between the theore t ica l  and exper imenta l  [9] r e su l t s .  

However ,  as noted previous ly ,  in taking the Rayleigh equation as the bas i s  the authors  of [7, 8] neglect  
the ro le  of the phase  change in Eq. (2.15 for the m a s s  and momen tum flux, which is not just i f ied in many  
cases. 

For the other limiting case, the Stefan problem, the compatibility conditions with account for surface 

tension are obtained from (2.15 in the form 

and f rom (2.2) 
W1 = WzandPl : P ~ - -  2 a / R  for 9'  ~ p "  

I~' O-~T_I=LPR" for - - [ i ] = L  
L 

and the in ter face  motion is de te rmined  en t i re ly  by heat  t r ans f e r .  

Let  us make  c l ea r  what changes occur  when we account for phase  change in the dynamics  of  the vapor  
bubble growth. F r o m  the f i r s t  equali t ies  of (2.1) and (2.35 follows 

n" = a (0  / R2 (~ - 0" / ~ ' )  (2.65 

Excluding a(t) f r o m  this  exp res s ion  by means  of re la t ion  (2.35 and using (2.15, we obtain 
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where P2 (T) is the saturated vapor p r e s su re  in the bubble for the tempera ture  T at the interface, and poo 
is the p res su re  at infinity. 

It follows from (207) that significant deviations from the case  studied in [7, 8] can be expected, f irst ,  
for p " ~  p '  for example, with bubble growth near the cri t ical  point T*; second, when (p")" is large, spec i -  
fically with a p re s su re  jump at infinity or  for high superheats.  

3. To i l lustrate the role  of the additional t e rms  obtained in (2.7), let us analyze its solution for 

P""~9', (P") '~4,  P 2 - - P ~ =  Ap = const (3.1) 

Under these assumptions (2.7) admits the single quadrature  

e-V~(2+a)(5-1) (2hp (e (2+~)(5-1)- i} 4c~ ~ e (z§ \V~ 

1 

9,, 

(3.2) 

Here  R 0 is the initial radius of the nucleus; we set R. = 0 for t = 0. For  the initial bubble growth 
stage the resul t ing solution (3.2) simplifies considerably if we take into account the smal lness  of ~ - 1  

(3.3) 

The solution of the Rayleigh equation (2.4) with condition (3.1) can be obtained from (3.3) for p"=  0. 
We see from compar ison of this solution with (3.3) that phase change leads to change of the initial bubble 
growth by a factor  of f = 1/~r0. 

Thus, for low pressu res ,  when p" << p', the phase change is re ta rded  by the influence of the dynamic 
t e r m s  to the degree that vapor bubble growth takes place near ly  the same as for a gas bubble. For  T ~ T* 
the deviations f rom the solutions of [7, 8] become significant even for low superheats.  

4. To determine the influence of the additional t e rms  in (2.7) on vapor bubble growth dynamics near 
T* under the same assumptions used in [7, 8], calculations were made using the Minsk-2 digital computer .  
The maximum liquid superheat  at t empera tures  near T* was determined using the method of [10, 11]. 

The sys tem of equations defining bubble growth dynamics used for the calculation has the form 

dp Lp'9" 
dT ( ? '  - -  p " )  T 

l 
2Lp" ~R'" 

T = To c'p" ~#a'~ (t')(t--t')l/'dt' ( a ' = ~ )  

(4.1) 

(4.2) 

(4.3) 

Here  c '  is the heat capacity, a '  is the thermal  diffusivity, and T O is the initial system temperature .  
Equation (4.3) yields the t empera tu re  at the bubble wall in the initial period of its growth (for R ~ R 0) [8] 
and is the solution of the heat conduction problem through a moving vaporizat ion surface.  

If we take as the initial conditions for the system (4.1) -(4.3)  the radius of the nucleus corresponding 
to the given superheat  

Ro' = 2a/(po -- p~) (4.4) 

(where P0 is the saturated vapor p r e s s u r e  at the tempera ture  T 0) and R~ = 0, then the system will be in 
equilibrium~ The external conditions must  be al tered to bring the bubble out of equilibrium. The initial 
bubble radius  will be taken equal to R 0 = R 0' + A, A <~R0 o 

The solutions of (4.1)-(4.3) together with the initial conditions were obtained by the Runge-Kutta 
method refined by subdivision of the step. For  compar ison and check of the computation technique, ca l -  
culations were made with superheats  AT = T 0-Too = 3 and 5~ for water at Too = 373~ and Poo = 105 N/m2, 
i.e., for the same conditions as in [7, 8]. 
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Fig. 1. Rela t ive  radius  change ~ - 1  v e r s u s  t ime  t, in 
nsec,  for T O = 641~ and A1-= 0.03~ 1) R o = 20 10-sin,  
2) R 0 = 5" 10-Tin, 3) R 0 = 2 . 8 . 1 0 - s i n ,  4) R 0 = 3- 10 -8 m, 
5) R 0 = 1" 10-7m, 6) R 0 = 5" 10-8m, 7) R 0 = 6 .10-8  m.  
P r i m e s  indicate calculat ions using (2.4). 

Fig. 2. Rela t ive  radius  change ~ - 1  v e r s u s  t i m e  t, in 
nsec,  combinat ions  of va lues  of T O and AI" shown in 
pa ren theses  in ~ 1 (641, 0.5), 2 (643, 0.2), 3 (647, 0~ 
a) R 0 = I . I 0  - ? m ,  b) R o = 3 . 1 0  -Sin.  

Since in this case  p"  << p ' ,  the s y s t em of equations (4 .1)-(4.3)  coincides in f i r s t  approximat ion  with 
the s y s t e m  used for calculat ion in [7, 8]~ In fact,  calculat ions made of the s y s t e m  of equations (4.1) - (4 .3)  
ag reed  well  with the solutions obtained in [7, 8]. This  gives  some confidence in the c o r r e c t n e s s  of this 
computat ional  technique for  o ther  initial conditions as well.  

However ,  near  the c r i t i ca l  point the calcula t ions  of water  vapor  bubble growth and col lapse  dynamics  
using the s y s t e m  of equations (4.1)-(4=3) led to a s ignif icant  d i f ference  f rom the solutions obtained f rom 
Eq. (2.4), (4.2), and (4.3), used in [7, 8], which is seen f rom Fig. 1~ 

It  was found f rom the ntunerical  calculation,  that, f i r s t  of all, for T ~- T*  the t e r m  RR" p . " / ( p ' - p " )  
in (4.1) is of the same  order  as the remain ing  t e r m s  of the equation; second, the bubble growth t ime  
t ~R//R" for R ~  R 0 is of the same order  as the cha r ac t e r i s t i c  t ime  R2//a of the heat -conduct ion p r o c e s s  

(i .e. ,  heat  conduction cannot be neglected). 

We see  f rom the curves  (Fig. 1) that at the initial t ime  the growth (or collapse) r a t e  is g r e a t e r  by f 
t imes  than that given by (2.4)0 Then the nature  of the bubble growth in accordance  with (2.4) and (2.7) is  
different.  Solution (2.7) has  an inflection point and then grows in propor t ion  to t to a power whose exponent 
is l e s s  than 1. This would be expected,  s ince for T ~  T* and p '  ~ p w the asymptot ic  behavior  of the bubble 
near  the c r i t i ca l  point should be desc r ibed  by the well-known Stefan solution [1]. The  initial slowing in the 
bubble growth (collapse) is a s soc ia ted  with the manifes ta t ion  of su r face  tension. 

It  appea r s  that in this case  the physical  p r o c e s s  of bubble growth is analogous to the p r o c e s s  of sp ec i -  
men  c rys ta l l i za t ion  f rom a melt ;  bubble growth takes  place together  with movemen t  mot ion of the i so the rm 
T = T (P2), where  T(p  2) is the phase  change t empera tu re ,  i .e.,  the bubble behavior  actual ly  differs  f rom the 
solution in [7, 8], where  " repuls ion"  (dynamic t e rms)  is significant,  s ince p"  <<p'. 

In con t ras t  with solution (2.4), solution (2.7) depends nonmonotonically on R0: for each T o the re  is an 
R 0 for  which the bubble growth r a t e  is max imal  (Fig. 1). 
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The var ia t ion  of vapor  bubble growth as a function of T O is shown in Fig~ 2, We see  f rom the cu rves  
that with approach to T* the bubble growth and condensation p r o c e s s  slows considerably,  This  co r re sponds  
to the genera l  tendency for slowing of p r o c e s s e s  near  the phase  change point of the second kind (specif ical ly,  
near  the cr i t ica l  point of the substance),  which is a s soc ia ted  with the s ingular i t ies  at this point of the i so -  
t he rma l  compress ib i l i ty ,  heat  capaci ty ,  and other the rmodynamic  quantities. 
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